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Abstract In this paper we extend to enzyme systems the results previously obtained
in paper I of this series for linear compartmental systems. We obtain the time course
equations for both the enzyme and ligand species involved in the reaction mechanisms,
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which fit a general enzyme system model when the connections between the different
enzyme species are of first or pseudofirst order. The kinetic equations obtained here
for a given species, enzyme or ligand have the advantage over all previous equations
described in the literature, in that they are in the most simplified form possible, since
they only contain the kinetic parameters and initial concentrations of the enzymatic
reaction which really have some influence on the time progress curves of the species
under study. These kinetic equations are denominated optimized equation to distin-
guish them from the others, which shall call non-optimized equations. We discuss
those cases when both types of equation coincide and we show how, when they do
not coincide, the non-optimized equations can be simplified to the optimized ones.
Therefore, we show that the optimized equations could be used in all cases to avoid
the need of subsequent simplifications to eliminate the parameters that play no role in
the corresponding time equations. To illustrate the use of this procedure we will apply
it to two simple examples of enzymatic reactions.

Keywords Compartmental system · Enzyme system · Kinetic equation · Enzyme
species · Ligand species

1 Introduction

Compartmental systems are important for describing many aspects of biotechnology
and many other biological sciences; for example pharmacokinetic processes, namely
the absorption, distribution and elimination of drugs, metabolite kinetics, residence
times [1,2], enzyme kinetics [3,4], nuclear medicine [5], the study of basic nutritional
processes, e.g. digestion, nutrient uptake and metabolism [6], toxickinetics [7], various
aspects of cell growth [8] and of tumor cell growth [9].

Recently, Garcia-Sevilla et al. published two contributions [10,11] on obtaining
symbolic optimized kinetic equations, i.e. in the simplest possible form, valid in any
linear compartmental system, open or closed, with zero inputs. The kinetic equations
were established in [10], and a software was implemented in [11] to facilitate the
process of obtaining these equations, circumventing the slow and laborious manual
work and hence the possibility of human errors. The results obtained in these contri-
butions can be applied directly to any linear compartmental system, thus providing a
powerful and interesting tool.

To illustrate the potential of these results we propose applying them to the kinetic
analysis of enzyme systems which, in the most usual experimental conditions, can
be modeled as a linear compartmental system, whose compartments are the different
enzyme forms involved in the reaction mechanism.

Most enzymatic reactions in the usual limiting enzyme experimental conditions can
be considered special cases of linear compartmental systems. In this contribution we
establish a general model of enzymatic reaction that fits a linear system of compart-
ments so that it can be applied to the results given in [10]. This is the starting point of
the present contribution. However, as already mentioned, this requires further analysis,
which is carried out here, to obtain the time course equations of the ligand species
(substrate, product, activators and inhibitors) involved in the enzymatic reaction.
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This analysis could be done directly without considering the enzyme system as a
compartmental system. However, this would be unnecessarily difficult, tedious and
slow and would limit the possibilities and the mathematical elegance that emanates
when one particularizes from a general model.

The aim of this analysis is to obtain analytical solutions, more general and optimized
than those currently available [12–22]. We provide the kinetic equations corresponding
to any enzymatic reaction that fits a general model corresponding to first or pseudofirst
order interconversions, reversible or irreversible, between the enzyme forms. Most
enzymatic reactions fit this model under certain initial conditions previously proposed
by our group [15–20,22].

In paper IV of this series we will implement specific software that allows these
optimized equations to be obtained easily and with a short computational time, thus
avoiding human errors.

2 Enzyme systems as compartmental systems

For enzymatic reactions, there are three experimental ways to achieve first or
pseudofirst order interconversions between enzyme forms: (1) Setting initial ligand
species concentration in excess with respect to the enzyme species to which the former
binds [13,14]. (2) Setting the initial free enzyme concentration in excess of the ligand
species with which the free enzyme combines [23–26] and (3) Assuming that the con-
centration of one or more enzyme or ligand species remains constant throughout the
course of the reaction, regardless of whether or not it is in excess with respect to other
species [26–38]. Options 1) and 2) correspond to the conditions of limiting enzyme
or limiting ligand, respectively.

Varon [39], Galvez and Varon [4] and Galvez et al. [40–42] analyzed the transition
phase of enzymatic reactions as a special case of closed linear compartmental systems.
This analogy regarding the kinetic behavior of enzymatic reactions as compartmental
systems has also been treated by Garcia-Meseguer [43] and Garcia-Meseguer et al.
[20]. But all the equations used by these authors to analyze the enzymatic reactions as
compartmental systems suffer from the same limitations: the equations are not in the
most simplified form because they contain kinetic parameters and initial concentrations
that do not really have any influence on the instantaneous concentrations of interest.
In this contribution, we adapt optimized kinetic equations for compartmental systems,
Eqs. (44)–(46) in [10], to the enzymatic systems, to obtain the optimized kinetic
equations for the enzyme species involved in the reaction mechanism and, from these
equations, we obtain the optimized time course equations for the ligand species.

2.1 Enzymatic reactions as compartmental systems

Since this contribution is an extension of [10], the notation used here is the same as
used there. Any additional notation will be introduced during the course of this work,
setting the following adaptations, when necessary:

1. The number of compartments, n, is used as the number of enzyme species.
2. Compartment Xi is used as the enzyme species Xi (i = 1, 2, . . . , n).
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Scheme 1 Possible elementary
reactions [1]–[6] of the general
model of enzymatic reaction of a
linear compartmental system
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3. The fractional transfer coefficient Ki, j (i, j = 1, 2, . . . , n) between two compart-
ments Xi and X j (i, j = 1, 2, . . . , n; i �= j) is used as a rate constant of first or
pseudofirst order if, in the conversion of the enzyme species Xi into X j, there are
no parallel steps. If there are parallel steps, then Ki, j is replaced by a sum of rate
constants of first or pseudofirst order that are represented by Ki, j (1), Ki, j (2), . . .

Obviously, in the case of parallel steps, Ki, j = Ki, j (1) + Ki, j (2) + . . .

4. The initial amount of matter in the compartment Xi , xo
i , is used as the initial

concentration of the enzyme species Xi , [Xi ]0
5. The instantaneous amount of matter in the compartment Xi , xi , is used as the

instantaneous concentration of enzyme species Xi , [Xi ].
The general model of enzymatic reaction, which can be treated as a closed linear com-
partmental system with zero input, is shown in Scheme 1 [4,39,44]. This general enzy-
matic reaction model consists of n enzyme species, denoted by Xi (i = 1, 2, . . . , n),
and g ligand species, denoted by Ys (s = 1, 2, . . . , g). The reaction steps of the model
may be of types [1]–[6] indicated in Scheme 1. Rate constants, ki, j , can be zero in
any of the steps [1]–[3]. In steps [4]–[6] the subscript r normally takes one or two
values, except in step [4], where it takes at least two values, otherwise this step would
coincide with step [3].

2.1.1 Initial conditions and rate constants

It is assumed that at the onset of the reaction more than one enzyme species can be
present, which in the notation of [10] belong to set �. It is also assumed that if a ligand
species, Ys , binds to an enzyme species, then the concentration of this ligand species
remains approximately constant throughout the reaction, which can be reached in
limiting enzyme conditions or as a result of a metabolic regulation of the concentration.
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In these conditions, at any reaction time, the instantaneous concentration of Ys, [Ys],
is approximately equal or equal to its initial concentration, [Ys]0.

The direct connection between the different enzymatic forms is expressed through
rate constants, K j,i (i, j = 1, 2, . . ., n; i �= j). If the enzyme species X j reacts with
the ligand species Ys to form the enzyme species Xi , then K j,i = k j,i [Ys]0. If X j

becomes Xi in a unimolecular step, then K j,i = k j,i . If one enzyme species, X j , is
not converted into another, Xi , then K j,i = 0. If there are parallel steps between a pair
of enzyme species, X j and Xi , that connect them directly, then rate constants need
to be distinguished in some way, for example, by giving a number to each one, e.g.
[K j,i (1), Ki, j (1)], [K j,i (2), Ki, j (2)], . . . for parallel steps 1, 2,…In these cases:

K j,i = K j,i (1) + K j,i (2) + · · · (1)

Ki, j = Ki, j (1) + Ki, j (2) + · · · (2)

3 Concentration-time equations for enzyme species

If the notations of Eqs. (44)–(46) in [10] are adapted for enzymatic reactions, as
described above, the following equations are obtained for the instantaneous concen-
tration of the enzyme species:

[Xi ] = Ai,0 +
∑

h∈z(i)

Ai,heλh t (i = 1, 2, . . . , n) (3)

Ai,0 =
∑

k∈ω(i) ( fk,i )u(i)(Ei ) [Xk]0

Fu(i)(Ei )
(i = 1, 2, . . . , n) (4)

Ai,h =
(−1)u(i)−1 ∑

k∈ω(i) [Xk]0

{∑u(i)
q=0 ( fk,i )q(Ei )λ

u(i)−q
h

}

λh
∏

p∈z(i)
p �=h

(λp − λh)

[i = 1, 2, . . . , n; h εz(i)] (5)

where the meaning of u(i), λh[h = 1, 2, . . . , u(i)], ω(i), ( fk,i )q [q = 0, 1, . . . , u(i)]
and z(i) are those described in [10].

Equations (3)–(5) are the optimized general kinetic equations for the enzyme
species, with the possibility that more than one enzyme species could be present
at the onset of the reaction.

4 Concentration-time equations for ligand species

The differential equations giving the variation of the concentration of any ligand
species, Ys , have the form:

d[Ys]
dt

=
∑

(i, j)

(
K j,i [X j ] − Ki, j [Xi ]

)
(s = 1, 2, . . . , g) (6)
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where (i, j) means that the sum is extended to all pairs of values (i, j) where i and j
are the subscripts that appear in reaction steps [2]–[6] described in Scheme 1. If in the
reaction scheme there are parallel steps between two enzyme species X j and Xi , and
Ys is involved in any of these steps, then the pair (i, j) for each of the steps and the
K j,i and Ki, j, values in Eqs. (8)–(11), which appear below, should be replaced by the
corresponding numbered symbol. For example, in a parallel phase in which K j,i (2)

and Ki, j (2) symbols are to be used, the distinction (i, j)(2) must be included.
If Eqs. (3)–(5) are taken into account in Eq. (6) and both sides are integrated, we

obtain, after some rearrangement and using the previous notation:

[Ys] − [Ys]0 = βs + αs t + fs(t) (7)

where:

αs =
∑

(i, j)

{
K j,i

∑
k∈ω( j) ( fk, j )u( j)(E j )[Xk]0

Fu( j)(E j )
− Ki, j

∑
k∈ω(i) ( fk,i )u(i)(Ei )[Xk]0

Fu(i)(Ei )

}

(8)
and fs(t) is the following function of time that depends on the ligand Ys , that is, on s:

fs(t) =
∑

(i, j)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

K j,i

∑

h∈z( j)

(−1)u( j)−1 ∑
k∈ω( j) [Xk]0

∑u( j)
q=0 ( fk, j )q(E j )λ

u( j)−q
h

λ2
h

∏
p∈z( j)

p �=h

(
λp − λh

) eλh t

−Ki, j

∑

h∈z(i)

(−1)u(i)−1 ∑
k∈ω(i) [Xk]0

∑u(i)
q=0 ( fk,i )q(Ei )λ

u(i)−q
h

λ2
h

∏
p∈z(i)
p �=h

(
λp − λh

) eλh t

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(9)

If in Eq. (7) we make t = 0, then:

βs = −
∑

(i, j)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

K j,i

∑

h∈z( j)

(−1)u( j)−1 ∑
k∈ω( j) [Xk]0

∑u( j)
q=0 ( fk, j )q(E j )λ

u( j)−q
h

λ2
h

∏
p∈z( j)

p �=h

(
λp − λh

)

−Ki, j

∑

h∈z(i)

(−1)u(i)−1 ∑
k∈ω(i) [Xk]0

∑u(i)
q=0 ( fk,i )q(Ei )λ

u(i)−q
h

λ2
h

∏
p∈z(i)
p �=h

(
λp − λh

)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(10)
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In “Appendix 1” we demonstrate that Eq. (10) can be written as:

βs =
∑

(i, j)

⎡

⎣K j,i

∑

k∈ω( j)

[Xk]0

{
( fk, j )u( j)−1(E j )

Fu( j)(E j )
− ( fk, j )u( j)(E j )Fu( j)−1(E j )

F2
u( j)(E j )

}
−

−Ki, j

∑

k∈ω(i)

[Xk]0

{
( fk,i )u(i)−1(Ei )

Fu(i)(Ei )
− ( fk,i )u(i)(Ei )Fu(i)−1(Ei )

F2
u(i)(Ei )

}⎤

⎦ (11)

5 Examples

To illustrate the use of the obtained equations we will apply them to two simple exam-
ples of enzymatic reaction schemes. The chosen examples, despite their simplicity, are
suitable for observing the advantages of the equations proposed in this contribution.

5.1 Example 1

In this first example we will obtain the instantaneous concentration of the enzymatic
form Eox of Scheme 2, which corresponds to one segment of the mechanism of
oxityrosinase acting on monophenols, as proposed by Fujieda et al. [45]. The cor-
responding graph is shown in Fig. 1.

Scheme 2 Enzymatic reaction model proposed by Fujieda et al. [45], where Eox is the oxi form of tyrosinase,
M is a monophenol and Em-D complex type met of tyrosinase-diphenol

(a) 

(b) 

Fig. 1 a Directed graph related to the enzymatic reaction scheme shown in Scheme 2. X1, X2, X3 and X4
denote the compartments that correspond to the enzyme species Eox, EoxM, Eox-M and Em-D, respectively.
K1,2, K2,1, K2,3 and K3,4 are the fractional transfer coefficients. b Condensation diagram corresponding
to directed graph of (a). Classes are C1 = {X1, X2}, C2 = {X3} and C3 = {X4}. The initial class is C1, C2
is the transit and C3 is the final one
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Initial conditions We assume that the only enzyme species present at t=0 is the
free enzyme Eox, which corresponds to the compartment X1, whose initial and instan-
taneous concentrations are denoted by [Eox]0 and [Eox], respectively. We denote by
[M]0 and [M] the initial and instantaneous concentrations, respectively, of M. We also
assume that [M] remains practically constant during the course of the reaction and,
therefore, approximately equal to [M]0 (which can be achieved if [Eox]0 << [M]0).
Thus, any reaction step of this mechanism is of first or pseudofirst order, so that it fits
our general model.

Fractional transfer coefficient notation The nonzero fractional transfer coeffi-
cients of Fig. 1 are related with the velocity constants of Scheme 2 as follows:

K1,2 = km[M]0
K2,1 = k−m

K2,3 = kn

K3,4 = ke

⎫
⎪⎪⎬

⎪⎪⎭
(12)

Instantaneous concentration of Eox The equations for the time evolution of the
enzyme species can be manually obtained by applying Eqs. (3)–(5) and proceeding as
explained in [10]. The parameters and coefficients involved in these equations are:

i = 1, u(i) = 2, z(i) = {1, 2} , ω (i) = {1} ,� = {X1} , E(�, X1) = E1 = {C1}
(13)

Taking into account these values, Eq. (3) is:

[X1] = A1,0 + A1,1eλ1t + A1,2eλ2t (14)

where λ1 and λ2 are the roots of the polynomial T1(λ) = λ2 + F1(1)λ + F2(1) with:

F1(1) = K1,2 + K2,1 + K2,3 (15)

F2(1) = K1,2 K2,3 (16)

Since E1 = {C1}, then

F1(E1) = F1(1) (17)

F2 (E1) = F2(1) (18)

In Eq. (14) expressions of A1,0, A1,1 and A1,2 are:

A1,0 = −[X1]0( f1,1)2(E1)

F2(E1)
(19)

A1,1 = −
[X1]0

2∑
q=0

( f1,1)q(E1)λ
2−q
1

λ1 (λ2 − λ1)
(20)
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A1,2 = −
[X1]0

2∑
q=0

( f1,1)q(E1)λ
2−q
2

λ2 (λ1 − λ2)
(21)

Coefficients ( f1,1)q(E1), which are obtained from coefficients Fq(E1), as described
by Garcia-Meseguer [20], are:

( f1,1)0 = 1
( f1,1)1 = K2,1 + K2,3
( f1,1)2 = 0

⎫
⎬

⎭ (22)

Taking into account Eqs. (15)–(16), the relationship between the fractional transfer
coefficients and rate constants, λ1 and λ2 are the roots of the equation:

λ2 + (km[M]0 + k−m + kn) λ + kmkn[M]0 = 0 (23)

and moreover:

A1,0 = 0 (24)

A1,1 = −[Eox ]0
(
λ+

1 k−m + kn
)

λ2 − λ1
(25)

A1,2 = −[Eox ]0 (λ2 + k−m + kn)

λ1 − λ2
(26)

so that Eq. (14) reduces to:

[Eox ] = A1,1eλ1t + A1,2eλ2t (27)

5.2 Example 2

Now let us obtain the instantaneous concentration of the product, P, released in an enzy-
matic reaction whose mechanism is shown in Scheme 3 [46–48]. For ligands S, M and
P, we will use the arbitrary notation Y1, Y2 and Y3, respectively. The corresponding
directed graph and condensation diagram are shown in Fig. 2.

Initial conditions. We assume that, at t = 0, the only enzyme species present
is the free enzyme E, which corresponds to the compartment X1, whose initial and
instantaneous concentrations are denoted by [E]0 and [E], respectively. We also assume
that, at t=0, there is no product, i.e., [P]0 = 0. The initial concentrations of S and M are
denoted by [S]0 and [M]0, respectively, which we will consider much greater than [E]0
so that instantaneous concentrations of S, [S], as well as of M, [M], remain practically
constant during the reaction course and, therefore, approximately equal to [S]0 and
[M]0. Thus, under these conditions, any reaction step of the mechanism described is
of first or pseudofirst order and therefore corresponds to our model.
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(a) (b)

X2X1

K1,3

1,

2K ,1

K 2

X3 X4

K4,3

K2,4K3,,4
C1 C2

Fig. 2 a Directed graph of Scheme 3. X1, X2, X3 and X4 denote the compartments that correspond to the
enzyme species E, ES, EM and ESM, respectively. K1,2, K2,1, K3,4 and K4,3 are the fractional transfer
coefficients. b Condensation diagram corresponding to directed graph (a). The classes are: C1 = {X1, X2}
and C2 = {X3, X4}. The initial class is C1 and C2 is the final one

Scheme 3 Enzymatic reaction
model consisting of a general
mechanism of Botts and Morales
[47] where the modifier is
irreversible and the product, P, is
released only from ES

S

+E S ES E +
+

+

+
P

M

ESM

M
k

k

k

k1 2

-1

4
k'

k'

1

-1

k3

EM

Fractional transfer coefficient notation. The nonzero fractional transfer coeffi-
cients shown in Fig. 2 are related to the rate constants in Scheme 3 as follows:

K1,2 = k1[S]0
K2,1 = K2,1(1) + K2,2(2)

K2,1(1) = k−1
K2,1(2) = k2
K1,3 = k3[M]0
K2,4 = k4[M]0
K3,4 = k′

1[S]0
K4,3 = k′−1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(28)

Instantaneous concentration of P. In this example Y3 = P and so [Y3] = [P] and
also [Y3]0 = 0, so that Eq. (7) can now be written as:

[P] = β3 + α3t + f3(t) (29)

Product P is obtained in only one step, which is irreversible. This step is one of the
two parallel steps (2,1) in which the enzyme species X2 ( j = 2) becomes X1(i = 1),
characterized by K2,1(2) = k2. Since this step is irreversible, K1,2(2) = 0. The above
considerations allow us rewrite Eqs. (8), (9) and (11) to give β3, α3 and f3 involved
in Eq. (7) as follows:
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β3 = K2,1(2)
∑

k∈ω(2)

[Xk]0

{
( fk,2)u(2)−1(E2)

Fu(2)(E2)
− ( fk,2)u(2)(E2)Fu(2)−1(E2)

F2
u(2)(E2)

}

(30)

α3 = K2,1(2)

∑
k∈ω(2) ( fk,2)u(2)(E2)[Xk]0

Fu(2)(E2)
(31)

f3(t) = K2,1(2)
∑

h∈z(2)

(−1)u(2)−1 ∑
k∈ω(2) [Xk]0

∑u(2)
q=0 ( fk,2)q(E2)λ

u(2)−q
h

λ2
h

∏
p∈z(2)

p �=h

(
λp − λh

) eλh t

(32)

Proceeding as explained in [10] gives:

� = {X1} (33)

ω(2) = {1} (34)

E (�, X2) = E2 = {C1} (35)

T1(λ) = λ2 + F1(1)λ + F2(1) (36)

F1(1) = K1,2 + K1,3 + K2,1 + K2,4 (37)

F2(1) = K1,2 K2,4 + K1,3 K2,1 + K1,3 K2,4 (38)

u(2) = 2 (39)

TE2(λ) = λ2 + F1(E2)λ + F2(E2) (40)

F1(E2) = F1 (1) (41)

F2(E2) = F2 (1) (42)

z(2) = {1, 2} (43)

( f1,2)0 = ( f1,2)2 = 0 (44)

( f1,2)1 = K1,2 (45)

Taking into account that [X1]0 is equal to [E]0, then α3 = 0 and

β3 = k1k2[S]0[E]0

k1k4[S]0[M]0 + k3 (k−1 + k) [M]0 + k3k4[M]2
0

(46)

f3(t) = k1k2[S]0[E]0

λ1 − λ2

(
eλ1t

λ1
− eλ2t

λ2

)
(47)

[P] = β3 + f3(t) (48)

where λ1 and λ2 in Eq. (47) are the roots of the next polynomial T1(λ):

T1(λ) = λ2 + {k1[S]0 + k−1 + k2 + (k3 + k4) [M]0} λ + k1k4[S]0[M]0

+k3 (k−1 + k) [M]0 + k3k4[M]2
0 = 0 (49)
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6 Results and discussion

In this work we have adapted the kinetic equations corresponding to zero input closed
linear compartmental system, obtained in [10], for use in the general enzymatic reac-
tion model shown in Scheme 1, to acquire, by the direct application of the results there
obtained, the time course equations of the different enzyme species involved, Eqs.
(29)–(32). Hence, from the above equations, the time course equations for the ligand
species involved have been derived: Eqs. (7)–(9) and (11).

6.1 Optimized kinetic equations

Equations (3)–(5), as well as (7)–(9) and (11), are in the simplest possible form in a
double sense: (1) only the kinetic parameters and initial concentrations that have any
influence on the instantaneous concentration of the species under study are involved in
these equations and (2) according to the species under study, the arguments involved,
i.e., the roots λh [h ∈ z(i) in Eqs. (3)–(5) and h ∈ z( j) and h ∈ z(i) for different
pairs ( j, i) involved in Eq. (7)], are given as the roots of the irreducible polynomials
Tr (λ) (r = 1, 2, . . ., δ) associated with the corresponding classes Cr whose enzymatic
forms influence the wanted concentration. For this reason we shall call these equations
optimized equations. To include more particular cases, in deriving these equations
we have assumed that, in the general model, more than one enzyme species may
be present at the onset of the reaction, as frequently occurs in enzymatic reactions
[14,49–53].

6.2 Additional notation

For convenience, hereafter we will use the following additional notation:

IM (initial mechanism): initial mechanism proposed for a particular enzymatic
reaction.
G: A generic species, enzymatic or ligand, involved in IM, whose instantaneous
concentration, [G], is to be obtained. For example, G in Scheme 2 may be any of
the species Eox, M, EoxM, Eox-M or Em-D and in Scheme 3 any of the species E,
ES, EM, ESM, S, M or P.
oE(G): Optimized equations used to obtain [G]. For example, the optimized equa-
tions to obtain [Eox] in Scheme 2, i.e., oE(Eox), are Eqs. (14), (19)–(21) and the
optimized equations to obtain [P] in Scheme 3, i.e., oE(P), are Eqs. (29)–(32).
oR(G): Optimized results obtained when using oE(G). These results are in the most
simplified form. For example, oR(Eox), corresponding to Example 1, are given by
Eqs. (27), (25) and (26), and oR(P), corresponding to Example 2, are given by
Eqs. (46)–(48). Figure 3 shows schematically how the oR(G) are obtained for any
IM from the corresponding oE(G).
non-oE(G): Non optimized kinetic equations used to obtain [G].
non-oR(G): Results obtained when non-oE(G) are applied in mechanism IM to
obtain [G].
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OR (G)

IM

Non- OR (G)

Generally very laborious simplification

Non-OE(G)OE(G)

Fig. 3 Schematic illustration of the two possible ways for deriving the time course equation of a species, G,
involved in IM. On the left, the oE(G) are used and the oR(G) are obtained. On the right, the non-oE(G) are
used and the non-oR(G) are obtained. When the oR(G) and non-oR(G) do not match, as occurs in Examples
1–3, a process of simplification leading from the non-oR(G) to the oR(G), generally laborious and prone
to errors, is necessary as is performed in the main text

6.3 Non optimized kinetic equations

There are several contributions that provide the time course equations, i.e. the kinetic
equations, of both the enzyme and ligand species for different general models of
enzymatic reactions in which all interconversions between the enzyme forms are of
first or pseudofirst order [13–16,19]. Thus, kinetic equations have been derived for a
general model in which all the reaction steps are reversible and only the free enzyme
[13] or more than one enzyme species [14] is present at the onset of the reaction. There
are also different contributions in the literature [16,19,39] that allow the instantaneous
concentration of the ligand and enzyme species involved in the general model shown
in Scheme 1 (in which irreversible reaction steps may exist) to be obtained for the
case that one [15] or more [16] enzyme species are present at the onset of the reaction.
Varon et al. published an algorithm that allows the symbolic expressions of coefficients
involved in these equations to be obtained without expansion of any determinant, and
they implemented a software that provides these coefficients [15,20]. In “Appendix
2”, the same equations obtained by Varon et al. [16] are shown for the first time but
they are improved because the coefficients used in them are always non-negative.

Several contributions present kinetic analyses of enzymatic reaction models which
can be considered as particular cases of the general model analyzed in this work. In
Fig. 4 we have indicated, in chronological order, only some of these contributions
stating the most important characteristic of each.

Both optimized and non-optimized equations are applicable to enzymatic systems
whose reaction mechanisms fit the general mechanism indicated in Scheme 1. In
many enzyme systems, but not in all, the results obtained with the optimized and non-
optimized equations coincide, i.e., oR(G) = non-oR(G), for any [G]. The only possible
condensation diagrams of enzyme systems in which this occurs are indicated in Fig. 5,
i.e., this coincidence is given only in those cases, where the compartmental system
corresponding to the reaction mechanism consists of one only class or one initial
class, together with one or more final class, each containing one only compartment
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1995 – Varon et al. [17]

2, 4, 5, 7, 10, 11 and 13

1968 – Darvey [13]

1, 3, 5, 8, 10 and 12

Present contribution

2, 4, 6, 8, 10, 12 and 14

1990 - Varon et al. [15]

2, 3, 5, 8, 10, 11 and 13

Characteristics:

D
at

e 
o

f 
p

u
b

lic
at

io
n

1. Valid if all reaction steps are reversible
2. The reaction steps can be reversible or irreversible

3. No rapid equilibrium assumption
4. Rapid equilibrium assumption is possible

5. Only the free enzyme is present at onset of the reaction
6. More than one enzyme species can be present at onset of the reaction

7. Valid only for steady state
8. Valid for transient phase and steady state

9. Valid only for enzyme species
10. Valid for both ligand and enzyme species

11. Final equations are not optimized
12. Final equations are optimized

13. Software for MS-DOS is available
14. Software for MS-Windows is available

1977 – Darvey [14]

1, 3, 6, 8, 10 and 12

1991 - Varon et al. [16]

2, 3, 6, 8, 10, 11 and 13

1997 – Varon et al. [18]

2, 4, 5, 7, 10, 11 and 13

1999 – Varon et al. [19]

2, 4, 5, 8, 10, 11 and 13

2001 – Garcia-Meseguer et al.  [20]

2, 3, 6, 8, 9, 11 and 13

2009 – Qi et al. [21]

2, 4, 5, 7, 9, 11 and 14

2010 – Garcia-Sevilla et al. [22]

2, 4, 5, 7, 10, 11 and 14

1956 – King and Altman [12]

2, 4, 5, 7, 9 and 12

Fig. 4 Schematic chronological representation for some enzymatic models presented in previous contri-
butions with their characteristics and relationship with the general model studied here
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C1
C1

C4 C2

C3

Cδ

(a) (b)

Fig. 5 Condensation diagrams corresponding to those enzyme systems in which expressions of the con-
centration of any of species involved, G, using both optimized and non optimized equations, coincide. a A
single final class C1, where all enzyme species are directly or indirectly connected with all others. b An
initial class C1, to which one or more enzyme species may belong. This class is connected to one or more
final classes, C2, C3, . . ., Cδ , each of them consisting of only one enzyme species (indicated by a black
dot)

Scheme 4 Simplified mechanism for kinetic evaluation of the activity of tyrosinase proposed by Yamazaki
and Itoh [55]

Scheme 5 Michaelis-Menten
mechanism with inactivation of
free enzyme and
enzyme-substrate complex [56]

+E S ES E + P

F2

k

k

k

k1 2

-1

4
k3

F1

(enzyme species). In Schemes 4 and 5 and the corresponding Figs. 6 and 7, examples
of enzymatic reaction mechanisms where this happens are shown.

However, there are many other mechanisms where it does not happen that
oR(G) = non-oR(G) for any [G]. These enzyme systems are those whose condensation
diagram does not correspond to any of those shown in Fig. 5. The three examples stud-
ied above are of this type. A further example, among the many possible, is outlined in
Scheme 6 and corresponding Fig. 8.

Obviously, both optimized and non optimized equations can be applied to any
IM fitting general Scheme 1 to obtain [G]. But if the non-oE(G) is used for any IM
whose condensation diagram is not one of those included in Fig. 5, then the results
obtained must be simplified either by eliminating those kinetic parameters and/or
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(a) (b)

Fig. 6 a Directed graph concerning enzymatic reaction scheme depicted in Scheme 4. X1, X2, X3, X4,

X5, X6 and X7 denote compartments corresponding to enzyme species Eox, EoxM, Eox − M, Em − D,

Em, Em − C and Ed, respectively. K1,2, K2,1, K2,3 K3,4, K4,5, K5,6 K6,5, K6,7, K7,1 and K1,7 are
fractional transfer coefficients. b Condensation diagram corresponding to directed graph (a). All compart-
ments belong to a single class C1, which is, therefore, a final class

(a) (b)

X2X1

K1,3

1,

2K ,1

K 2

X3 X4

K2,3

C1

C3 C2

Fig. 7 a Directed graph concerning enzymatic reaction scheme depicted in Scheme 5. X1, X2, X3
and X4 denote the compartments that correspond to the enzyme species E, ES, F1 and F2, respectively.
K1,2, K2,1, K1,3 and K2,4 are fractional transfer coefficients. b Diagram of condensation corresponding to
directed graph (a). Class C1 is initial and includes enzyme species X1 and X2, i.e., C1 = {X1, X2}. Classes
C2 and C3 are final and they consist of a single enzyme species each one: C2 = {X3} and C3 = {X4}

Scheme 6 Tyrosinase
inactivation enzymatic reaction
model proposed by
Muñoz-Muñoz et al. [57]

E’dS

E’d
+
S

k-sks

k1
Ed

+
S

EdS Ei
ki k'i

k'-sk's

initial concentrations with no influence on [G] or expressing the arguments as roots
of more simple polynomials.

In this contribution we provide a tool to derive kinetic equations of any enzymatic
reaction fitting Scheme 1, with the security that they will not require subsequent
simplification in any case, irrespective of the reaction mechanism involved.
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(a) (b)

C3

C2C1

Fig. 8 a Directed graph concerning enzymatic reaction scheme depicted in Scheme 6. X1, X2, X3, X4
and X5 denote the compartments that correspond with enzyme species Ed, EdS, E′

d, E′
dS and Ei,

respectively. K1,2, K2,1, K1,3 K3,4, K4,3, K2,5 and K4,5 are fractional transfer coefficients. b Dia-
gram of classes that correspond to the connectivity diagram shown (a) consisting of three classes:
C1 = {X1, X2}, C2 = {X3, X4} and C3 = {X5}. C1 is an initial class, C2 is a transit class and C3
is a final class

6.4 Examples of simplification of non-oR(G) when oR(G) and the non-oR(G) differ

To demonstrate how non-oR(G) can be simplified, we will use the non-oR(G) results
for the above Examples 1 and 2.

6.4.1 Example 1

If we apply the general non-optimized equations (89)–(91), given in “Appendix 2”,
for enzyme species, to IM in Scheme 2 we obtain:

[Eox ] = A1,1eλ1t + A1,2eλ2t + A1,3eλ3t (50)

where λ1, λ2 and λ3 are the roots of the equation:

λ3 + F1λ
2 + F2λ + F3 = 0 (51)

where:

F1 = km[M]0 + k−m + kn + ke (52)

F2 = km (kn + ke) [M]0 + ke (k−m + kn) (53)

F3 = kmknke[M]0 (54)

A1,1 = [Eox ]0
{
λ2

1 + (k−m + kn + ke)λ1 + ke(k−m + kn)
}

(λ2 − λ1) (λ3 − λ1)
(55)

A1,2 = [Eox ]0
{
λ2

2 + (k−m + kn + ke)λ2 + ke(k−m + kn)
}

(λ1 − λ2) (λ3 − λ2)
(56)

A1,3 = [Eox ]0
{
λ2

3 + (k−m + kn + ke)λ3 + ke(k−m + kn)
}

(λ1 − λ3) (λ2 − λ3)
(57)
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The non-oR(Eox) given by Eqs. (50), (55)–(57) should coincide with the oR(Eox)

given by Eqs. (27), (25), (26) because they arise from the same enzyme system.
The simplifications carried out in Sect. 6.4, to go from the non-oR(G) to the oR(G)

in examples 1 and 2 are not very difficult, but, for other systems, this process could
become very laborious and prone to human errors, and also unnecessary if the oE(G)
is directly applied to the IM.

Hence we will show that Eqs. (50), (55)–(57) can be simplified to Eqs. (27), (25),
(26). Indeed, by handling Eqs. (51)–(54), the first one can also be written as:

{
λ2 + (km[M]0 + k−m + kn)λ + kmkn[M]0

}
(λ + ke) = 0 (58)

so that two of the three roots λ1, λ2 and λ3, e.g. λ1 and λ2, are the roots of the first
polynomial factor in Eq. (58), and λ3 is:

λ3 = −ke (59)

If Eq. (59) is taken into account in Eq. (57), the numerator on the right side becomes
null and therefore:

A1,3 = 0 (60)

Note that according to Eq. (59):

λ2
1 + (k−m + kn + ke)λ1 + ke(k−m + kn) = − (λ1 + k−m + kn) (λ3 − λ1) (61)

λ2
2 + (k−m + kn + ke)λ2 + ke(k−m + kn) = − (λ2 + k−m + kn) (λ3 − λ2) (62)

Inserting Eqs. (61) and (62) in Eqs. (55) and (56), respectively, and simplifying, we
obtain the optimized Eqs. (25) and (26).

6.4.2 Example 2

If we apply the general non-optimized equations (92), (98)–(100), in “Appendix 2”,
for ligand species, to IM in Scheme 3 we obtain:

[P] = β3 +
3∑

h=1

γ3,heλh t (63)

where λ1, λ2 and λ3 are the roots of the equation:

λ3 + G1λ
2 + G2λ + G3 = 0 (64)

with

G1 = (
k1 + k′

1

) [S]0 + (k3 + k4) [M]0 + k−1 + k2 + k′−1 (65)

G2 = (
k1k4 + k3k′

1 + k4k′
1

) [S]0[M]0 + k1k′
1[S]2

0 + k3k4[M]2
0
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+ {
k1k′−1 + k′

1 (k−1 + k2)
} [S]0

+ {
k3

(
k−1 + k2 + k′−1

) + k4k′−1

} [M]0 + (k−1 + k2) k′−1 (66)

G3 = k1k4k′
1[S]2

0[M]0 + k3k4k′
1[S]0[M]2

0 + k3k4k′−1[M]2
0

+ {
k1k4k′−1 + k3k′

1 (k−1 + k2)
} [S]0[M]0 + k3 (k−1 + k2) k′−1[M]0

(67)

and

β3 = k1k2(k′
1[S]0 + k′−1)[S]0[E]0

G3
(68)

γh = k1k2
λh + k′

1[S]0 + k′−1

λh

3∏
p=1
p �=h

(
λp − λh

) [S]0[E]0 (h = 1, 2, 3) (69)

Note that the kinetic parameters k′
1 and k′−1 involved in Eqs. (65)–(67) have no

influence on [P], according to Scheme 3, and therefore, we must simplify the time
course equation of P, so that these two parameters do not appear. By comparing Eq.
(63) with Eq. (29), we observe that in the first one there is an extra exponential term
that can be removed by simplifying Eq. (63). This simplification of Eqs. (63)–(69)
to obtain the optimized equivalents will be carried out below, and is indicated by a
tortuous line in Fig. 3. However, this can be avoided by using our optimized equations,
as will be seen below.

Equations (65)–(67) allow us to write Eq. (64) as:

{
λ2 + F1(E2)λ + F2(E2)

} (
λ + k′

1[S]0 + k′−1

) = 0 (70)

where the expressions for F1(E2) and F2(E2) are given by Eqs. (41) and (42). From
Eq. (70) we see that two of the three roots λ1, λ2 and λ3, e.g. λ1 and λ2, are the roots
of the first polynomial factor in Eq. (70), and λ3 is:

λ3 = − (
k′

1[S]0 + k′−1

)
(71)

and so Eq. (69) can be written as:

γh = k1k2
λh − λ3

λh

3∏
p=1
p �=h

(
λp − λh

) [S]0[E]0 (h = 1, 2, 3) (72)

which implies that:

γ1 = k1k2

λ1 (λ1 − λ2)
[S]0[E]0 (73)
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γ2 = k1k2

λ2 (λ2 − λ1)
[S]0[E]0 (74)

γ3 = 0 (75)

Moreover, careful observation of the expression of G3 allows us to write:

G3 = F2(E2)(k
′
1[S]0 + k′−1) (76)

and therefore Eq. (68) becomes:

β3 = k1k2[S]0[E]0

F2(E2)
(77)

Briefly, the non-oR(P) obtained using the non-oE(P) is simplified to the oR(P)
obtained by applying the oE(P) through the simplification process. Note: (1) In the
oR(P) only those kinetic parameters and initial concentrations that influence [P] are
involved and (2) To obtain λ1, λ2 and λ3 it is not necessary to analytically solve a
cubic equation, which is a very complicated process, but they can be obtained as the
roots of a quadratic equation and of a first order equation.

6.5 Applicability of the oE(G)

The optimized equations, describing the behavior of the enzyme and ligand species,
are applicable to the transition phase and to the steady state of enzymatic reactions
whose enzymatic reaction scheme conforms to the model described in this paper. This
model includes most enzyme systems, whether or not the mechanism has branches and
whether or not there are parallel steps, the velocity constants are repeated, there are
inactivation steps, irreversible inhibition steps, or one or more species are present at
the onset of the enzymatic reaction, etc. However no such equations can be applied to
mechanisms of enzymatic reactions involving zymogen activation or cyclic reversible
enzyme cascades.

At the steady state, the exponential terms of Eqs. (3) and (7) [see Eq. (9)] are
negligible, so that these two equations can be reduced to:

[Xi ] = Ai,0 (i = 1, 2, . . . , n) (Steady State) (78)

[Ys] − [Ys]0 = βs + αs t (s = 1, 2, . . . , g) (Steady State) (79)

where expression of Ai,0, βs and αs are given by Eqs. (4), (11) and (8).

6.6 Concluding remarks

In this contribution we have obtained, for the first time and based on [10], time concen-
tration equations for both enzyme and ligand species involved in any specific mech-
anism of an enzymatic reaction, IM, that fits the general model shown in Scheme 1,
regardless of whether one or more enzyme species are present at the onset of the
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Fig. 9 The oR(G) and the
non-oR(G) only coincide, for
any G, when the condensation
diagram is one of those indicated
in Figs. 5a and 6b, i.e., when the
condensation diagram consists
of a single class

IM

non - oE (G)oE (G)

oR (G) non - oR (G)

reaction. These equations, which are given in the most simplified form possible, are
denominated optimized kinetic equations, oE(G), to distinguish them from those exist-
ing in the literature for the same purpose, which we have called non-optimized kinetic
equations, non-oE(G). The oE(G) for a specific instantaneous concentration, [G] have
two important characteristics: (1) the symbolic expression of [G] involves only those
kinetic parameters and initial concentrations that have some influence on [G], (2) the
arguments involved in the exponential terms are obtained by solving the polynomials
which are factors and, therefore, of lower degree than the characteristic polynomial
corresponding to the enzyme system.

It is true that in many enzymatic reaction schemes, especially in those whose con-
densation diagram is that indicated in Fig. 5, when determining the instantaneous
concentration of any involved species, G—both oE(G) and non-oE(G)—lead to the
same result, as is schematically indicated in Fig. 9. However, since this does not happen
for all enzymatic reactions, it is advantageous to always use the optimized equations
proposed here.

Besides advantages (1) and (2) mentioned above, the optimized equations for the
instantaneous concentration of any ligand species, Ys, involved in the reaction mech-
anisms are given in a form that clearly distinguish the separate contribution to [Ys]
of any of the enzyme species from which Ys is released or with which Ys combines.
This form of the optimized equations for Ys is very useful for fully understanding
the partial contribution to [Ys] of each of the enzyme species involved. Neverthe-
less, for other purposes, e.g. for a computerized treatment, it may be more con-
venient to express them in a more compact and suitable form. This, together with
the implementation of a suitable software, will be attempted in paper IV of this
series.
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7 Appendix 1: Derivation of Eq. (11) from Eq. (10)

The first summatory

∑

h∈z( j)

(−1)u( j)−1 ∑
k∈ω( j) [Xk]0

∑u( j)
q=0 ( fk, j )q(E j )λ

u( j)−q
h

λ2
h

∏
p∈z( j)

p �=h

(
λp − λh

) (80)

of Eq. (10) can be expressed as:

(−1)u( j)−1
∑

k∈ω( j)

[Xk]0

u( j)∑

q=0

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

( fk, j )q(E j )
∑

h∈z( j)

1

λ
2−u( j)+q
h

∏
p∈z( j)

p �=h

(
λp − λh

)

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(81)

Using the algorithm presented in “Appendix A” of Arribas et al. [54] we know that:

∑

h∈z( j)

1

λ
2−u( j)+q
h

∏
p∈z( j)

p �=h

(
λp − λh

) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if q < u( j) − 1
1

Pu( j)
if q = u( j) − 1

Pu( j)−1

P2
u( j)

if q = u( j)
(82)

The meaning of Pu( j) is the product of all non null roots, u( j), of the polynomial
TE j (λ), i.e., those non null roots whose subscripts belong to the set z( j). Pu( j)−1 is
the sum of all different products of order [u( j) − 1] that can be formed with these
roots.

The polynomial TE j (λ) is given by:

TE j (λ) = F0(E j )λ
u( j) + F1(E j )λ

u( j)−1 + . . . + Fu( j)−1(E j )λ + Fu( j)(E j )

(83)

and is fulfilled that:

Pu( j)−1 = (−1)u( j)−1 Fu( j)−1(E j ) (84)

Pu( j) = (−1)u( j)Fu( j)(E j ) (85)
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Using Eqs. (84) and (85) in Eq. (82), we obtain:

∑

h∈z( j)

1

λ
2−u( j)+q
h

∏
p∈z( j)

p �=h

(
λp − λh

) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if q < u( j) − 1
(−1)u( j) 1

Fu( j)(E j )
if q = u( j) − 1

(−1)u( j)−1 Fu( j)−1(E j )

F2
u( j)(E j )

if q = u( j)

(86)

Taking into account these results in Eq. (80) one obtains:

∑

h∈z( j)

(−1)u( j)−1 ∑
k∈ω( j)

[Xk]0

u( j)∑
q=0

( fk, j )q(E j )λ
u( j)−q
h

λ2
h

∏
p∈z( j)

p �=h

(
λp − λh

)

=
∑

k∈ω( j)

[Xk]0

{
− ( fk, j )u( j)−1(E j )

Fu( j)(E j )
+ ( fk, j )u( j)(E j )Fu( j)−1(E j )

F2
u( j)(E j )

}
(87)

Similarly, for the second summatory of Eq. (10) we have:

∑

h∈z(i)

(−1)u(i)−1 ∑
k∈ω(i)

[Xk]0

u(i)∑
q=0

( fk,i )q(Ei )λ
u(i)−q
h

λ2
h

∏
p∈z(i)
p �=h

(
λp − λh

)

=
∑

k∈ω(i)

[Xk]0

{
− ( fk,i )u(i)−1(Ei )

Fu(i)(Ei )
+ ( fk,i )u(i)(Ei )Fu(i)−1(Ei )

F2
u(i)(Ei )

}
(88)

If Eqs. (87) and (88) are inserted into Eq. (10) we obtain the expression given by
Eq. (11) for βs .

8 Appendix 2: Non-optimized general kinetic equations

8.1 About the enzyme species

Non-optimized progress equations of an enzyme species belonging to a reaction
scheme that fits the above general model are given by Eqs. (3)–(5), which are repro-
duced here:

[Xi ] = Ai,0 +
∑

h∈z(i)

Ai,heλh t (i = 1, 2, . . . , n) (89)
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Ai,0 =
∑

k∈ω ( fk,i )u[Xk]0

Fu
(i = 1, 2, . . . , n) (90)

Ai,h =
(−1)u−1 ∑

k∈ω [Xk]0

{∑u
q=0 ( fk,i )qλ

u−q
h

}

λh

u∏
p=1
p �=h

(
λp − λh

)

(i = 1, 2, . . . , n; h = 1, 2, . . . , u) (91)

where u, λh, ω, ( fk,i )q are as described in [10]. [Xi ] is the instantaneous concentra-
tion of Xi and [Xk]0 is the initial concentration of Xk .

Equations (89)–(91) are the general non-optimized kinetic equations for the enzyme
species, with the possibility that there may be more than one enzyme species present
at the onset of the reaction.

8.2 About the ligand species

Varon [39] and Galvez and Varon [4] established the following equations for a ligand
species Ys (s = 1, 2, . . ., g):

[Ys] − [Ys]0 = βs + αs t +
u∑

h=1

γs,heλh t (s = 1, 2, . . . , g) (92)

αs = (−1)n+1 ∑
(i, j)

{
K j,i

∑
k∈ω (−1) j+k(ak, j )u[Xk ]0 − Ki, j

∑
k∈ω (−1)i+k(ak,i )u[Xk ]0

}

Fu

(93)

βs = (−1)n+1 ∑
(i, j)

{
K j,i

∑
k∈ω (−1) j+k(ak, j )u−1[Xk ]0 − Ki, j

∑
k∈ω (−1)i+k(ak,i )u−1[Xk ]0

}

Fu

− Fu−1

Fu
αs (94)

γs,h =
(−1)c ∑

(i, j)

{
K j,i

∑
k∈ω (−1) j+k [Xk ]0

∑u
q=0 (ak, j )qλ

u−q
h −Ki, j

∑
k∈ω (−1)i+k [Xk ]0

∑u
q=0 (ak,i )q λ

u−q
h

}

λ2
h

u∏

p=1
p �=h

(
λp − λh

)

(h = 1, 2, . . . , u) (95)

where n is the number of enzyme species involved in the reaction mechanism, c is the
number of final classes in the condensation diagram and the meanings of u, λh, ω

and [Xk]0 are the same as in Eqs. (89)–(91). If u = 1, then the denominator in Eq.
(95) is λ2

1, i.e. F2
1 . The coefficients (ak,i )q (k ∈ ω; i = 1, 2, . . . , n; q = 0, 1, . . . , u)

in Eqs. (93)–(95) are those involved in the expansion of determinant Dk,i (λ) defined
in [10], as follows:
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Dk,i (λ) = λc−1
u∑

q=0

(ak,i )qλu−q (k ∈ ω; i = 1, 2, . . . , n) (96)

Hence, coefficients (ak,i )q (k ∈ ω; i = 1, 2, . . . , n; q = 0, 1, . . . , u) are related
with coefficients ( fk,i )q (k ∈ ω; i = 1, 2, . . . , n; q = 0, 1, . . . , u), defined in [10]
and already used in this contribution for the relationships [20,39,44]:

(ak,i )q = (−1)n+i+k−1( fk,i )q (k ∈ ω; i = 1, 2, . . . , n; q = 0, 1, . . . , u) (97)

If in the reaction scheme there are parallel steps between two enzyme species,
X j and Xi , and Ys is involved in any of these steps, then the pair (i, j) for each of
the steps and the values of K j,i and Ki, j in Eqs. (93)–(95) must be replaced by the
corresponding numbered symbol, as already indicated in the main text.

If, in Eqs. (93)–(95), Eq. (6) of [10] and Eq. (97) are borne in mind, then the first
ones can be written in a more simplified form as:

αs =
∑

(i, j)

{
K j,i

∑
k∈ω ( fk, j )u[Xk]0 − Ki, j

∑
k∈ω ( fk,i )u[Xk]0

}

Fu
(98)

βs =
∑

(i, j)

{
K j,i

∑
k∈ω ( fk, j )u−1[Xk]0 − Ki, j

∑
k∈ω ( fk,i )u−1[Xk]0

}

Fu
− Fu−1

Fu
αs

(99)

γs,h =
(−1)u−1 ∑

(i, j)

{
K j,i

∑
k∈ω

[Xk ]0
u∑

q=0
( fk, j )qλ

u−q
h −Ki, j

∑
k∈ω

[Xk ]0
u∑

q=0
( fk,i )qλ

u−q
h

}

λ2
h

u∏
p=1
p �=h

(
λp − λh

)

(100)

Equations (92) and (98)–(100) are general non-optimized kinetic equations for ligand
species, presented here for the first time, taking into account the possibility that more
than one enzyme species may be present at the onset of the reaction.
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